

"Endangered large carnivores and scavenging raptors in Europe"

Faculty of Veterinary Medicine, Teramo – 13-15 October 2016

FIRST DESCRIPTION OF AVIAN PAPILLOMAVIRUS INFECTION IN GYPS FULVUS, ITALY

<u>Cristina E. Di Francesco</u>, Francesca Profeta, Mariarita Romanucci, Roberto Zuccarini, Tiziana Altea, Daniela Malatesta, Leonardo Della Salda, Fulvio Marsilio

"Endangered large carnivores and scavenging raptors in Europe"

Faculty of Veterinary Medicine, Teramo – 13-15 October 2016

FIRST DESCRIPTION OF AVIAN PAPILLOMAVIRUS AND POXVIRUS COINFECTION IN GYPS FULVUS, ITALY

<u>Cristina E. Di Francesco</u>, Francesca Profeta, Mariarita Romanucci, Roberto Zuccarini, Tiziana Altea, Daniela Malatesta, Leonardo Della Salda, Fulvio Marsilio

CASE REPORT

- September 2015
- "Riserva naturale del Monte Velino"
- Population of griffons (30-35 couples-140 animals)
- Affected /examined animals 9/61 (14.3%)
 - 6 adults and 3 subadults
 - 3 females and 6 males
- Multifocal, frequently ulcerated, cutaneous papulopustular and nodular lesions, with superficial crusts
- Flat, round cutaneous ulcers

MATERIALS AND METHODS- Histology

- 4 samples of cutaneous lesions collected from 2 animals
- Tissues were fixed in 10% neutral buffered formalin and embedded in paraffin wax
- Sections of 4 μm were stained with haematoxylin and eosin

MATERIALS AND METHODS— Electron Microscopy

- Formalin-fixed samples were prepared for electron microscopy
- After rehydration, tissues were re-fixed in glutaraldehyde solution (2.5%) and embedded in epoxy resin
- Ultra-thin sections were stained with uranyl acetate and lead citrate, and examined with a Zeiss EM 109 transmission electron microscope

MATERIALS AND METHODS - Nucleic acid isolation

- Cutaneous samples from 2 animals
- Stored at -20° C
- Tissues were homogenised (10%) in PBS pH 7.2
- DNA was extracted using the Dneasy Tissue Kit (Qiagen)
 - Proteinase K overnight at 56° C

MATERIALS AND METHODS - Nucleic acid isolation

- PCR protocols for Avipoxvirus and Avian Papillomavirus
- Avipoxvirus Gene CNPV240 (Core protein P4b) 250 and 578 bp

Name Primer	Sequence	Reference
Multiplex Poxvirus (F)	5'- GATGGCTGACGAGGAACAAAT -3'	Pérez-Trís et al., 2011
Multiplex Poxvirus (R)	5'- TAGCCGGCATAAACATAACTCTTC-3'	
Poxvirus P4b (F)	5'-CAGCAGGTGCTAAACAACAA-3'	Lee & Lee, 1997
Poxvirus P4b (R)	5'- CGGTAGCTTAACGCCGAATA -3'	

Gene L1 major capsid protein of Avian papillomaviruses

-435 bp

Name Primer	Sequence	Reference
Multiplex Papillomavirus	5'-TYCCWAAGGTSTCTGSAAATCA-3'	Pérez-Trís et al., 2011
(F)		
Multiplex Papillomavirus	5'CCRAAGCCAATATCKSACAT-3'	
(R)		

MATERIALS AND METHODS— Sequence analysis

- Fragments were purified by PCR Extraction kit (Qiagen)
- DNA sequencing at BioFab research srl laboratories
 - For Papillomavirus, additional degenerated primers were designed on the basis of the sequences of avian papillomaviruses
- Sequences were compared in GenBank database using Clustal Omega and Blast softwares
- Phylogenic analysis was performed by MEGA.5 software

RESULTS- Histology

- Intense and diffuse epidermal hyperplasia (4X)
- Multifocal to diffuse areas of epidermal ulceration (4X)
- Intense heterophilic infiltration and diffuse serocellular crusts with mixed bacterial colonies (4X)
- Multifocal, perivascular lymphocytic infiltration in the dermis (4X)
- Keratinocytes with extensive vacuolization and swelling (10X)

RESULTS- Histology

 Numerous eosinophilic cytoplasmic inclusion bodies characteristic of Poxvirus (Bollinger bodies)

 No other findings, nuclear inclusions, or koilocytes typical of papillomavirus infection

RESULTS – Electron Microscopy

 Evident viral inclusion within the cytoplasm of an epidermal cell containing several virions (3.000x)

- Detail of inclusion with numerous mature virions of 250-300 nm
- Enveloped virions showing electron dense core with a characteristic dumbbell-shaped structure (20.000x)

RESULTS— Nucleic acid isolation

- A fragment of 243 bp was obtained with primers <u>MultiplexPoxvirus</u>
- No amplification with primers Poxvirus P4b
- A final fragment of 528 bp was obtained with <u>MultiplexPapillomavirus</u> and degenerated primers

RESULTS— Sequence analysis

Poxvirus primers:

- Sequence specific for gene P4b of Avipoxvirus
- Highest identity with Penguinpox virus (92%)

Similar identity (92%) but with a lower coverage (80%) for Avipox isolate ID8964

Chaffinch (Fringilla coelebs)

African penguin (Spheniscus demersus)

RESULTS— Sequence analysis

Papillomavirus primers

- Sequence specific for L1 gene of avian Papillomaviruses
- Highest identity with *Psittacus erithacus* papillomavirus PePV
 (69%; coverage 99%) and Duck
 papillomavirus (68%; coverage
 99%)

Lower identity for *Francolinus leucoscepus* papillomavirus 1 FIPV1
 (66%; coverage 94%)

RESULTS – Phylogenic analysis

DISCUSSION

- First identification of Avipoxvirus and Avian papillomavirus in griffon vulture
- Avipoxvirus

Avian papillomavirus

Table 1 (continued)		A.Rector, M.VanRanst/Virology 445 (2013) 213-						
Host species taxonomic order	Host species	223	Papillomavirus name	Abbreviation (previous)	Classification			
177	Rickett's big-footed Bat	Myotis ricketti	Myotis ricketti papillomavirus 1	MrPV1	unclassified			
	Egyptian fruit bat	Rousettus aggyptiacus	Rousettus aegyptiacus papillo mavirus 1	RaPV1	Psipapi Ilomavirus 1			
Diprotodontia	Brush-tailed bettong	Bettongia peni cillata	Bettongia penicillata papillo mavirus 1	BpPV1	Dyo kappap apillo mavirus 1			
-985 2013	uro pean hed gehog	Erinaceus europaeus	Erinaceus europaeus papillo mavirus 1	EePV1 (EHPV)	Dyo etapap illomavirus 1			
2013	ellow-necked Frankolin	Francolinus	Francolinus leucoscepus	FIPV1 (FLPV)	Dyo epsil onpapillo mavirus			

CHARACTERIZATION OF AVIAN POXVIRUS IN ANNA'S HUMMINGBIRD (CALYPTE ANNA) IN CALIFORNIA, USA

Loreto A. Godoy^{1†}, Lisa S. Dalbeck,¹ Lisa A. Tell,² Leslie W. Woods,³ Rita R. Colw Barbara Robinson,⁴ Susan M. Wethington,⁴ Anneke Moresco,⁵ Peter R. Woolcock Hole R. Ernest^{1,6,7}

Journal of Zoo and Wildlife M Copyright 2016 by American Asso

AVIAN POXVIRUS INFECTION IN A FLAMINGO (PHOENICOPTERUS RUBER) OF THE LISBON ZOO

Ana M. Henriques, Ph.D., Teresa Fagulha, D.V.M., Margarida Duarte, D.V.M., I Ramos, D.V.M., Sílvia C. Barros, Ph.D., Tiago Luís, B.Sc., Rui Bernardino, D.V.M. Fernandes, D.V.M., Narciso Lapão, D.V.M., José Ferreira da Silva, D.V.M., Ph.D. Fevereiro, D.V.M., Ph.D.

Claudia Niemeyer^{1*}, Cíntia M. Favero², Cristiane K. M. Kolesnikovas³, Renata Paulo Brandão² and José Luiz Catão-Dias¹ **LETTERS**

Journal of Wildlife Diseases, 52(3), 2016, pp. 000–000 © Wildlife Disease Association 2016

and Characterization of Fringilla coelebs Papillomavirus

Free-Living and Captive Birds in Italy

ari,^{1,3} Mariagrazia Zanoni,¹ Laura Gallina,² Giovanni Casà,² Alessandra vazza¹ ¹Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna , 25124 Brescia, Italy; ²Dipartimento di Scienze Mediche Veterinarie, Alma Mater Via Tolara di sopra 50, 40064 Ozzano Emilia (Bologna), Italy; ³Corresponding author

my Vijayakumar'', Anamika Mishra'', Pradeep N. Gandhale', Kupam Dutta', dhakar¹, Parimal Roychoudhary², Himanshu Kumar³, Diwakar D. Kulkarni¹

. Duerr³, F. N. Dela Cruz Jr.¹,

DISCUSSION

First report of co-infection in wild birds

132 R. A. J. Williams et al.

Table 1. Summary of PCR tests for cytochrome b, avipox/avian papillomavirus multiplex and simple avipox.

Avian Pathology, 2014

Vol. 43, No. 2, 130-134, http://dx.doi.org/10.1080/03079457.2014.886326

ORIGINAL ARTICLE

Polymerase chain reaction detection papillomavirus in naturally infected blood, swab and tissue samples

Richard A. J. Williams 1,2*, Clara Escudero Duch3, Javie

Department of Zoology and Physical Anthropology, Faculty of Biolog Madrid, Spain, ²Natural Sciences, Saint Louis University, Madrid, Sp. Biological Sciences, Universidad Complutense de Madrid, Madrid, Sp.

Species	Blood			Swab			Tissue		
	Cyt b	Multiplex (APV/PV)	Simple (APV)	Cyt b	Multiplex APV/PV	Simple (APV)	Cyt b	Mulaplex (APV/PW)	Simple (APV)
Carduelis carduelis	(+)	(-)/(-)		(+)	(-)/(-)			/ \	
Carduelis carduelis	(+)	(-)/(-)		(+)	(-)/(-)			/ \	
Cyanistes caeruleus	(+)	(-)/(-)	ı		````		(+)	(+)/(-)	(+)
Erithracus rubecula	(+)	(-)/(-)		(+)	(+)/(-)	(+)			` ` `
Fringilla coelebs 1	(+)	(-)/(-)		``			(+)	(-)/(+)	(-)
Fringilla coelebs 2	(+)	(-)/(-)	\			1	(+)	(-)/(+)	(-)
Fringilla coelebs 3	(+)	(-)/(-)					(+)	(-)/(+)	(-)
Fringilla coelebs 4	(+)	(-)/(-)				1	(+)	(-)/(+)	(-)
Garrulus glandarius	(+)	(-)/(-)		(+)	(-)/(-)		``		
Parus major	(+)	(-)/(-)		(+)	(-)/(-)		- 1		
Parus major	(+)	(-)/(-)		(+)	(-)/(-)				
Passer domesticus 1	(+)	(-)/(-)		(+)	(-)/(-)	(-)	(+)	(+)/(-)	(+)
Passer domesticus 2	(+)	(-)/(-)	1	(+)	(-)/(-)	` '	` '		` '
Passer domesticus 3	(+)	(-)/(-)		(+)	(-)/(-)	(-)	(+)	(+)/(-)	(+)
Passer domesticus 4	(+)	(-)/(-)		(+)	(+)/(-)	(+)	` '		` '
Prunella modularis	(+)	(-)/(-)		(+)	(-)/(-)		- 1		
Sitta europea	(+)	(-)/(-)		(+)	(-)/(-)				
Sitta europea	(+)	(-)/(-)		(+)	(-)/(-)				
Sylvia atricapilla 1	(+)	(-)/(-)	(-)	(+)	(+)/(-)	(+)	(+)	(+)/(-)	(+)
Sylvia atricapilla 2	(+)	(-)/(-)	(-)	(+)	(+)/(-)	(+)	(+)	(+)/(-)	(+)
Sylvia atricapilla 3	(+)	(-)/(-)	(-)	(+)	(+)/(-)	(+)	(+)	(+)/(-)	(+)
Sylvia atricapilla 4	(+)	(-)/(-)	` '	` '		` ′	(+)	(-)/(-)	(-)
Sylvia atricapilla 5	(+)	(-)/(-)	1				(+)	(+)/(-)	(+)
Sylvia atricapilla 6	(+)	(-)/(-)		(+)	(-)/(-)		``		` '
Sylvia atricapilla 7	(+)	(-)/(-)	ı	(+)	(+)/(-)	(-)			
Sylvia atricapilla 8	(+)	(-)/(-)		(+)	(-)/(-)	` ′	1		
Sylvia atricapilla 9	(+)	(-)/(-)		(+)	(+)/(-)	(-)	- 1		
Sylvia atricapilla 10	(+)	(-)/(-)		(+)	(-)/(-)	` ′			
Sylvia atricapilla 11	` ` ′			(+)	(+)/(-)	(+)	(+)	(+)/(-)	(+)
Sylvia atricapilla 12	(+)	(-)/(-)					(+)	(+)/(-)	(+)
Total tested		29			22			14	
Cyt b-positive		29 (100%)			22 (100%)			14 (100%)	
APV-positive	0 (0%)		8 multiplex PCR (36%)		9 multiplex PCR (54%)				
					im le PCR 27			imple PCR ()4	
PV-positive		0 (0%)			0(0%)			(29%)	,

APV, avipox; Cyt b, cytochrome b; PV, avian papillomavirus.

FUTURE PROSPECTIVES

- Pathogenic role of these infections in griffon???
 - No mortality episodes
 - Progressive and complete recover of affected

FUTURE PROSPECTIVES

- Pathogenic role of these infections in griffon???
- Monitoring of morbility and mortality rate of associated Poxvirus/Papillomavirus is essential
- More in depth characterization of two viruses to understand the taxonomy (novel species? novel host?)

ACKNOWLEDGEMENTS

- STAFF of the Riserva Naturale
- Mario Posillico

THANK YOU FOR THE ATTENTION